
N94- 27910

THE MOLECULAR MATCHING PROBLEM

by

Professor Rex K. Kincaid

Department of Mathematics

The College of William and Mar)"

Williamsburg, VA 23187

Abstract

Molecular chemistry contains many difficult optimization problems that have begun to attract the atten-

tion of optimizers in the Operations Research community. Problems including protein folding, molecular

conformation, molecular similarity, and molecular matching have been addressed. Minimum energy" con-

formations for simple molecular structures such as water clusters, Lennard-Jones microclusters, and short

polypeptides have dominated the literature to date. However, a variety of interesting problems exist and we

focus here on a molecular structure niatching (MSM) problem.
Consider two molecular structures, A and B, of similar size. We are asked to determine how similar

the two structures are. One of the molecular structures, say A, and its inter-atomic distance matrix Da
is known apriori. The only information known for the second structure, B, is its inter-atomic distance

matrix DB. If the two molecular structures have the same number of atoms then the objective is to find a
permutation (represented by a permutation matrix P) of the rows and columns of DB, so that the absolute

value of the entry-wise matrix difference, Dn - PDBP T, is as small as possible. In the case when there

exists a permutation yielding a difference of zero, then the two molecules are identical (up to rotations and

translations). The MS3[problem was first studied by Barakat and Dean (1990a,b).
In the ensuing presentation we will focus solely on the structural matching problem when the two molecular

structures have the same number of atoms. Similar techniques can be applied to the case when the molecular

structures are unequal in size. In particular, we will study raudondy generated structures generated in the

unit cube and two DHFR protein structures (L. easel and E. coil) obtained from the Brookhaven protein

data bank. First, we formulate the MSM problem as a 0/1 nonlinear integer programming problem and

discuss the performance of a linearizafio-n-technique due to Oral and Kettani (1992). Next, a tabu search
heuristic is described and its performance summarized.

A 0/1 nonlinear integer program can be constructed for the MSM problem. The 0/1 decision variables pq
are the entries in the permutation matrix P. In addition to the 0/1 restriction, each row and column of P

must have exactly one entry with a value of 1. This is reflected in the following constraints.

Pi./ = 1 for all j = 1. n and Plj = I for all i = 1. n. (1)
i=I j=l

The entries in the matrix DA and DB represent the euclidean distances between the atoms (or points in
_3). As a result the distance matrices are symmetric with zero entries on the main diagonal. Two objective

functions are considered;

n-1 n n ra-I

(2) rain _ _ Id_ - E Z Pi_d_tP"l and (3) rain X £ (d_ - Z _ pi_.dkBtpj,) -_.

i=1 .]=i+1 k=l /=1 i=1 j=iq-1 k=l l=l

Objective function (2) appears to be simpler, in that, when expanded, the resulting polynomial is of

degree two. However, the absolute value terms are difficult to implement in most standard optimization

packages. Objective function (3), when expanded, results in a fourth order polynomial. This polynomial can

be dramatically simplified by imposing the 0/1 restrictions and the constraints (1). In fact, all third and

fourth order terms vanish and we are left with a 2nd degree polynomial. Consequently we use (3) so that

we can avoid the absolute value terms of (2). The resulting 0/1 quadratic integer program (QIP) will have
n e decision variables and 2n linear constraiuts.

One approach to solve this O/1 QIP (or at least provide an upper bound on the optimal objective function

for the heuristic search) is to first linearize the quadratic objective function so that a 0/1 integer linear

120

program (ILP) results. By doing this we now have a variety of commercially available linear programming

(LP) and branch and bound codes at our disposal. The LP codes can solve the 0/1 ILP if we relax the 0/1

restrictions. That is, if we replace pij = 0.1 with Pij >_ 0 and pij < 1. The hope is that the optimal solution
to the LP relaxation will have many of the p,:j close to 0 or 1 and that this solution can be used as a hol

start for the heuristic search procedures. If this does not happen the branch and bound codes will provide

feasible solutions (and perhaps optimal solutions), but at a much greater computational effort.

Several linearizations procedures exist for quadratic 0/1 integer program with linear constraints. We have

chosen the most compact formulation available (due to Oral and Kettani 1992) since we hope to be able

to solve relatively large problems. Their linearization of our problem results in 2n 2 decision variables and

n 2 + 2n reg"utar constraints plus n 2 upper bound constraints of the form p/j < 1 (non-negativity of the

decision variables is assumed by atl commercial codes).

The above techniques were tested on n = 10 and n = 20 size problems. The second being an 800 variable

440 constraint (with 400 upper bounds) size linear program. Both of the LP relaxations yielded optimal

solutions with Pij near 1/n for nearly all i and j. That is, almost none of the decision variables were close

to 0 or 1. Consequently, this method did not yield an effective way to generate starting solutions for.the
heuristic algorithm. When n = 10 the branch and bound method of LINDO was used and a feasible solution

to the 0/1 ILP (and 0/1 QIP) was found. It was not the optimal solution. When n = 20 LINDO was unable
to solve the LP relaxation and the CPLEX code at Purdue University was used to determine the optimal

solution. A branch and bound method has not been attempted for the n = 20 problem. Hence, it is still

unknown whether the branch and bound method will yield good starting points for the heuristic algorithm.
Tabu Search (T.q) incorporates conditions for strategically constraining and freeing the search process, as

well as memory functions of varying time spans to intensify and diversi_" the search. The search proceeds

from one solution to another via a move function and attempts to avoid entrapment in local optima by

constructing a tabu list which is simply a list of previously selected moves. These previously selected moves

are then deleted from the set of potential moves associated with the current solution. The underlying

assumption is that prohibiting the repetition of nmves will prevent the return to earlier local optima.

For our purposes, the heuristic embedded in the TS will be a local improvement scheme. Beginning with
an initial feasible solution to an optimization problem, the local improvement procedure attempts to improve

upon the trial solution by making small (incremental) changes. A rearrangement operation is applied until a
perturbed configuration with an improved objective function value is discovered. The improved arrangement

becomes t_he new trial solution, and the process is repeated until no further incremental improvements can

be made. The basic solution approach for TS consists of a construclion phase that generates a starting

solution (hopefully from the 01 ILP) and an improvement phase that seeks to iteratively improve upon the
starting solution. After maxit iterations of the improvement phase we do one of the folio,ring; intensify the

search by restarting the improvement phase at the current best solution; or diversify the search by restarting
the improvement phase in an unexplored region of the solution space; or stop and display the best solution

found. For additional information about TS see Glover (1990), Kelly et al (1991), and Kincaid and Berger
(1993).

Several TS codes were written in Fortran 77 by the author. Tables 1 and 2 summarize the TS results for

randomly generated data when n = I0 and n "- 20. Column 4 lists the number of tabu moves. Column 5

lists the number of these moves that yielded the best objective function value yet encountered in the search
and whose tabu status was over-ridden[Column 6 is yes if the recency-based diversification scheme was

needed, and no otherwise. Column 7 is yes if tile frequency-based diversification scheme was needed, and

no otherwise. Tlle parameter memsiz refers to the number of moves kept on tile tabu list, while stop is

the number of attempts allowed to escape from a local optimum. The maximum number of neighborhood

searches allowed is given by rnazit. All computational times reported are for a 386-based microcomputer

without a math-coprocessor running at 16 MHz. The two DHFR protein structures-L, casei and E. coli-have

159 and 162 atoms respectively. A 20 atom portion of the L. casei protein was used to generate a series

of test problems and the resulting MSM was found to be much more difficult than the randomly generated
ones.

121

References

Barakat, M.T. and P.M. Dean, "Molecular Structure Matching by Simulated Annealing. 1. A Comparison
Between Different Cooling Schedules." j. of Computer-Aided Molecular Design, 4, 1990, 295-316.

., II. An Exploration of the Evolution of Configuration Landscape Problems," J. of Computer-
Aided Molecular Design. 4. 1990, 317-330.

Glover, F., "Tabu Search: A Tutorial," In$erfaces, 20, 1990, 74-94.

Kelly, .'l.P, M. Lagmla, and F. C,lover_ ::A Study of the Diversification Strategies for the Quadratic Assignment
Problem," Working Paper, University of Colorado at Boulder, 1991.

Kincaid, R.K. and R.T. Bcrgcr, "Thc Dampcr Placcmcnt Problcm on Spacc Truss Structurcs," accepted s.t.
revisions Location Science 1993.

Oral, M. and O. Kettani, "Reformulating Nonlinear Combinatorial Optimization Problems for Higher Com-
putational Efficiency," European J. of Operational Research, 58, 1992. 236-249.

#

1

2

3

4

5

6

7

8

9

10

I itrs. time (m) tabu asp. dl d2

7

7

6

18

21

5

7

6

7

8

0.14

0.15

0.12

0.35

0.41

0.10

0.14

0.12

0.14

0.16

0

0

0

67

69

0

0

0

0

0

no

iio

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

Table 1. n = 10 tabu search results.

itrs. time (m) tabu asp. dl d2

1

2

3*

4

5

6

7

8

9

10+

20

21

68

15

118

36

16

17

27

134

1.54

1.61

5.26

i.t5

9.25

2.78

1.23

1.30

2.08

10.51

9

18

339

6

959

96

2

3

8

1052

0

2

5

0

13

7

0

0

3

23

no

no

yes

no

yes

no

no

no

IlO

yes

no

no

no

no

yes

no

no

no

no

no

(*) stop = n (+) ,naxit = 100

Table 2. n = 20 tabu search results: memsiz = n, stop = 2n, ,naxit = 50.

122

